
Presented @ DRIE Symposium

Building the Optimal Architecture
for Open Banking

2

Banking Evolved | Banks are quickly becoming technology companies.

To drive innovation, banks have to learn all about Agile, Dev-Ops, Cloud & (of course) APIs.

There are three main pressures driving this:

• Rising Customer Expectations

• Competition from FinTechs

• Regulatory Environment

Advances in new technologies are having a
dramatic impact on every facet of banking.

3

The Rise of the API | APIs are the pipelines that power Open Banking

However, Open Banking means different things to different people in different places.

In response to the three main pressures , banks
are rapidly adopting APIs, in an attempt to
decompose their business into re-usable chunks.

These chunks of functionality can be shared inside
the bank, but can also be shared beyond the bank,
which is what has come to be called Open Banking.

Sources: Backbase (left); Delloitte (right)

4

Global Landscape| Some regions regulate and some are market-driven.

These two approaches end up greatly affecting the focus of the solution architecture.

While different in key ways, note that
both approaches have the same goals:

• Competition

• Innovation

• Transparency

Market-Driven
(Pull)

Regulation-Driven
(Push)

Source: AT Kearney

5

Architecture Focus | Regulations drive APIs, but markets drive speed.

To truly support Open Banking, a bank needs both API management and delivery speed.

Market-Driven

Regulation-Driven

Regulatory mandates force banks to
publish Open APIs and support an
ecosystem of TPPs, demanding strong
capabilities around API management…

By contrast, market-driven solutions,
unencumbered by regulation, have focused
more on accelerating delivery speed.

… However, nothing in the regulations
forces them to modernize their legacy
systems, drastically slowing down delivery.

• Open APIs & Open Data

• Developer Experience

• Common Standards

• Agile Requirements Definition

• Consumer-Driven Contracts

• Precise scaling and enhancement

• Distributed Data using Events

• Unstructured “Big” Data Lakes

• Automated DevOps deployment

• Public cloud native (containers)

• Continuous Improvement (CI/CD)

DEVELOPER EXPERIENCE

Presentation Layer

BUSINESS CAPABILITIES

Logic Layer

OBJECTS & MODELS

Data Layer

ENVIRONMENTS

Infrastructure Layer

Architectural Concerns
(Full Stack)

6

The Role of API Gateways| Beware the “Magical Black Box” approach.

A distributed approach pushes all gateway functions down to each individual microservice.

Centralized Gateway

All cross-cutting concerns and isolation are in a single, “smart” layer.

Distributed Gateway

Cross-cutting concerns are distributed to the individual end-points.

Branch Telephone ATM On-Line Mobile Developers Devices

CENTRALIZED API GATEWAY

(“MAGICAL BLACK BOX”)

DOMAIN SERVICE BUS

Service-Oriented Platforms

PROPRIETARY INTERFACE

Legacy & Custom Platforms

MOM

NETWORK & SECURITY SERVICES

PERIMETER API GATEWAY (INNER/OUTER)

Branch Telephone ATM On-Line Mobile Developers Devices

GATEWAY

SERVICE

GATEWAY

SERVICE

GATEWAY

SERVICE

GATEWAY

SERVICE

GATEWAY

SERVICE

MICROSERVICES

7

Microservices Explained | APIs & microservices are not the same thing.

APIs make integration easier, but only microservices lead to high-speed release cycles.

APIs are the contract Microservices are the implementation

Microservices allow you to decompose monolithic
applications and enable delivery speed because they are…

Source: martinfowler.com

Good contracts based on modern standards (i.e. REST,
JSON, etc.) make integration easier & drastically improve
the Developer experience on the Consumer side…

… However, the same API could be implemented on any
back-end, and the wrong one (i.e. legacy systems) will
greatly hamper agility & speed, and therefore innovation.

• Independently
Upgradeable

• Precisely
Scalable

• Completely
Portable

8

MSA Roadmap| Microservices Architecture (MSA) is evolving rapidly.

The rise of service mesh will increase market volatility, and early adopters will gain a lead.

Microservice Architecture EvolutionAPI Management Delivery Speed

So
u

rc
e:

 K
o

n
g

Service Mesh ServerlessMonolith

API

9

Optimal Architecture | The service mesh is perfect for Open Banking.

The service mesh offers precise control & visibility, while supporting speed & innovation.

Perimeter API Gateway

C
o

n
tr

o
l P

la
n

e

Container Orchestration Environment (Kubernetes/OpenShift)

Domain

The service mesh acts as a
uniform infrastructure for
direct service-to-service
communication (via APIs).

It utilizes lightweight proxies
deployed side-by-side or
together with the services
known as sidecars.

It ensures consistent handling
of cross-cutting concerns in a
fully distributed manner,
using a control plane:

• Consistent Routing

• Security

• Logging

• Monitoring

… which provides resiliency, elastic scalability
and cloud portability.

10

Ideal for Disaster Recovery | Microservices are built for resiliency.

Microservices are self-contained, auto-managed & cloud-native, greatly easing DR/BCM.

From a DR/BCM perspective,
microservices running on a
Container Orchestrator like
Kubernetes/OpenShift are a
vast improvement over J2EE.

J2EE/legacy applications are
monolithic, so they are scaled
and managed by replicating
copies on multiple servers.

Microservices break down
the monolith and distribute
the functions across servers,
scaling replicas up and down
dynamically based on load.
They are so resilient that
some actively attack their
own Production environment
(Netflix’s Simian Army).

11

CIBC Case Study | Building a service mesh API platform for a bank.

The award-winning API Foundation is the first service mesh built specifically for banks.

We then subjected our API platform to intense, independent 3rd
party evaluation. So far the evaluations have been very positive.

“Great framework –

thoughtful, holistic

and quite advanced”

“Building custom as a hedge against a

volatile market makes sense right now”

“Security model is

built-in and highly

robust”

“Uses open

source

intelligently”

Then we took our framework to Europe…

There are three main reasons we took a build posture:

• Hedge against a volatile market

• Steer the technology to suite our needs

• Develop critical internal skills

Instead of gambling on one of many vendor platforms in a
highly volatile market, CIBC built our in-house platform, the
API Foundation on open-source, cloud native technology.

12

Real Results | The API Foundation is now in full swing across the bank.

While we have made progress towards a clear vision, there is still a long way to go.

We have taken great strides forward over
the last several months, achieving several
declared milestones.

Although we have only deployed a few
microservices, we are already projecting
significant savings (50-70%) in both cost
and time per integration.

API Foundation Core
Being Used Across
Delivery Teams

API Governance
Council in Place & APIs
are Mandated

Managed Container
Environment (CaaS) Fully
Operational

Ongoing Developer
Training for APIs &
Microservices

Pilot of internal API
Marketplace is
Available Today

Did the APIF Foundation
really win awards? Yes!

• Recognized by Nordic
APIs as a leader in MSA

• 2018 EA Award from
Forrester & InfoWorld

• 2019 Celent Model Bank
Award for Integration

13

Bank of the Future | Success demands a technological balancing act.

The pillars give you speed, but only a culture that embraces change drives true innovation.

Bank of the Future

TECHNOLOGY & OPERATIONS

ORGANIZATIONAL STRUCTURE

CORPORATE VALUES & CULTURE

CLOUDDEVOPSAPIs AGILE

API STRATEGY & PLATFORM
Open Banking only
focuses on this part...

... but to be successful
at Open Banking, you
will need all of these…

... and, crucially, you
will have to tackle
structural & cultural
challenges as well.

14

Build for Change| The metaphors used for IT systems are changing.

Systems that can evolve quickly are critical to the delivery of Open Banking technology.

Industrial Metaphors

• Bridges

• Buildings

• Cities

Biological Metaphors

• Cells

• Molecules

• Organisms

“There is no design at the beginning. You begin by coding a small amount of
functionality, adding more functionality, and letting the design shift & shape.”

Martin Fowler, Software Design Guru, Thoughtworks

Eyal Sivan, Senior Director, Enterprise Architecture

Thank you.

QUESTON & ANSWER

